martes, 3 de abril de 2012

campos magneticos producidos por una corriente

El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q, que se desplaza a una velocidad \mathbf{v}, sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad v como al campo B. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.
\mathbf{F} = q\mathbf{v} \times \mathbf{B}
donde F es la fuerza, v es la velocidad y B el campo magnético, también llamado inducción magnética y densidad de flujo magnético. (Nótese que tanto F como v y B son magnitudes vectoriales y el producto vectorial tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será
|\mathbf{F}| = |q||\mathbf{v}||\mathbf{B}|\cdot \mathop{\sin} \theta
La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre, puede ser considerada un magnetómetro.

Un conductor rectilíneo está recorrido por una corriente eléctrica. En las proximidades del conductor se sitúa una aguja imantada paralela al conductor. Al pasar la corriente la aguja gira hasta ponerse perpendicular al conductor. Al cesar la corriente, la aguja vuelve a su posición inicial. El paso de la corriente eléctrica ejerce sobre la aguja imantada los mismos efectos de un imán.Las corrientes eléctricas producen campos magnéticos.

Vamos a ver, supongo que te refieres al tema de Electromagnetismo. Pues dos conductores o mas son paralelos, si al ser considerados finitos o infinitos tienen la forma de un tubo largo, y son puestos en forma paralela entre si, ahora imaginate que llevan una corriente "I", entonces son conductores y cada uno de ellos ejerce un campo electromagnetico a cierta distancia de si mismo. Para dos conductores paralelos, hay una fuerza por unidad de longitud, cuya direccion depende de la direccion de la corriente, sin embargo para hablar de modulo :

F / L = Uo*I*I' / 2*pi*d

d = distancia entre los conductores

Uo = permeabilidad magnetica

I e I' = corrientes

F = fuerza

Conductor circular, son los conductores que pueden formar parte de una bobina o un solenoide, tienen forma circular, y al llevar una corriente " I", ejercen un campo magnetico perpendicular al plano :

B = Uo*I / 2r

Un solenoide es cualquier dispositivo físico capaz de crear una zona de campo magnético uniforme. Un ejemplo teórico es el de una bobina de hilo conductor aislado y enrollado helicoidalmente, de moco longitud infinita. En ese caso ideal el campo magnético sería uniforme en su interior y, como consecuencia, fuera sería nulo.
En la práctica, una aproximación real a un solenoide es un alambre aislado, de longitud finita, enrollado en forma de hélice (bobina) o un número de espirales con un paso acorde a las necesidades, por el que circula una corriente eléctrica. Cuando esto sucede, se genera un campo magnético dentro de la bobina tanto más uniforme cuanto más larga sea la bobina.
La bobina con un núcleo apropiado, se convierte en un electroimán. Se utiliza en gran medida para generar un campo magnético uniforme.
Se puede calcular el módulo del campo magnético dentro de la bobina según la ecuación:
H = \frac{ N \cdot I}{L}
Donde:
  • N : número de espiras del solenoide.
  • I : corriente que circula.
  • L : Longitud total del solenoide.
Este tipo de bobinas es utilizado para accionar un tipo de válvula, llamada válvula solenoide, que responde a pulsos eléctricos respecto de su apertura y cierre. Eventualmente controlable por programa, su aplicación más recurrente en la actualidad, tiene relación con sistemas de regulación hidráulica y neumática.
El mecanismo que acopla y desacopla el motor de arranque de los motores de combustión interna en el momento de su puesta en marcha es un solenoide.

http://es.wikipedia.org/wiki/Solenoide
http://mx.answers.yahoo.com/question/index?qid=20070604125238AAQqd8L

intensidad del campo magnetico

La susceptibilidad magnética es el grado de magnetización de un material, en respuesta a un campo magnético. La susceptibilidad magnética volúmica se representa por el símbolo χ, y no tiene dimensiones.


donde M es la magnetización del material (la intensidad del momento magnético por unidad de volumen) y H es la intensidad del campo magnético externo aplicado.

Si χ es positivo, el material se llama paramagnético (o ferromagnético), y el campo magnético se fortalece por la presencia del material. Si χ es negativa, el material es diamagnético, y el campo magnético se debilita en presencia del material.

La susceptibilidad magnética y la permeabilidad magnética (μ) están relacionadas por la siguiente fórmula:

μ = μ0(1 + χ)
donde μ0 es la permeabilidad magnética del vacío.

La intensidad del campo magnético:

Como sucede en otros campos de fuerza, el campo magnético queda definido matemáticamente si se conoce el valor que toma en cada punto una magnitud vectorial que recibe el nombre de intensidad de campo. La intensidad del campo magnético, a veces denominada inducción magnética, se representa por la letra B y es un vector tal que en cada punto coincide en dirección y sentido con los de la línea de fuerza magnética correspondiente. Las brújulas, al alinearse a lo largo de las líneas de fuerza del campo magnético, indican la dirección y el sentido de la intensidad del campo B.

La obtención de una expresión para B se deriva de la observación experimental de lo que le sucede a una carga q en movimiento en presencia de un campo magnético. Si la carga estuviera en reposo no se apreciaría ninguna fuerza mutua; sin embargo, si la carga q se mueve dentro del campo creado por un imán se observa cómo su trayectoria se curva, lo cual indica que una fuerza magnética Fm se está ejerciendo sobre ella. Del estudio experimental de este fenómeno se deduce que:

a) Fm es tanto mayor cuanto mayor es la magnitud de la carga q y su sentido depende del signo de la carga.

b) Fm es tanto mayor cuanto mayor es la velocidad v de la carga q.

c) Fm se hace máxima cuando la carga se mueve en una dirección perpendicular a las líneas de fuerza y resulta nula cuando se mueve paralelamente a ella.

d) La dirección de la fuerza magnética en un punto resulta perpendicular al plano definido por las líneas de fuerza a nivel de ese punto y por la dirección del movimiento de la carga q, o lo que es lo mismo, Fm es perpendicular al plano formado por los vectores B y v.

Las conclusiones experimentales a,b y e quedan resumidas en la expresión:

Fm = q.v.B.sen φ (11.1)

donde B representa el módulo o magnitud de la intensidad del campo y φ el ángulo que forman los vectores v y B. Dado que Fm, v y B pueden ser considerados como vectores, es necesario además reunir en una regla lo relativo a la relación entre sus direcciones y sentidos: el vector Fm es perpendicular al plano formado por los vectores v y B y su sentido coincide con el de avance de un tornillo que se hiciera girar en el sentido que va de v a B (por el camino más corto). Dicha regla, llamada del tornillo de Maxwell, es equivalente a la de la mano izquierda, según la cual las direcciones y sentidos de los vectores Fm,v y B vienen dados por los dedos pulgar, índice y corazón de la mano izquierda dispuestos en la forma que se muestra en la figura adjunta.

La ecuación (11.1) constituye una definición indirecta del módulo o magnitud de la intensidad del campo magnético, dado que a partir de ella se tiene:

B = Fm/q.v.sen φ (11.2)

La dirección de B es precisamente aquélla en la que debería desplazarse q para que Fm fuera nula; es decir, la de las líneas de fuerza. La unidad del campo magnético en el SI es el tesla (T) y representa la intensidad que ha de tener un campo magnético para que una carga de 1 C, moviéndose en su interior a una velocidad de 1 m/s perpendicularmente a la dirección del campo, experimentase una fuerza magnética de 1 newton.

1 T = 1 N/1 C. 1 m/s

Aunque no pertenece al SI, con cierta frecuencia se emplea el gauss (G): 1 T = 104 G

es.answers.yahoo.com/question/index?qid=20070923000141AAAsoCZ

Propiedades magnéticas de las materias

       El comportamiento magnético esta determinado por las interacciones entre dipolos magnéticos, estos dipolos a su vez están dados por la estructura electrónica del material. Por lo tanto, al modificar la microestructura, la composición o el procesamiento se pueden alterar las propiedades magnéticas.

Los conceptos que definen los efectos de un campo magnético en un material son:



Concepto

Definición

Momento magnético.

Intensidad de campo magnético asociado con el electrón.

Permeabilidad magnética.

El material amplifica o debilita el efecto del campo magnético.

Magnetización.

Representa el incremento en la inducción magnética debida al material del núcleo.

Susceptibilidad magnética.

Es la relación entre la magnetización y el campo aplicado, proporciona la amplificación dada por el material.


Así, cuando se acerca un campo magnético a un conjunto de átomos es posible observar diversas reacciones:
- Diamagnetismo:  El campo magnético influye en los momentos magnéticosde los electrones dentro del átomo y produce un dipolo para todo los átomos. Estos dipolos se oponen al campo magnético, haciendo que la magnetización sea menor a cero.

- Paramagnetismo: Debido a la existencia de electrones no apareados, a cadaátomo  se le asocia un momento magnético neto, causado por el giro de los electrones. Cuando se aplica un campo magnético, los dipolos se alinean con él, resultando una magnetización positiva. Pero, dado que los dipolos no interactúan, para alinearlos se requieren campos magnéticos extremadamente grandes. Además, en cuanto se elimina el campo, el efecto se pierde.

- Ferromagnetismo: Es causado por los niveles de energía parcialmente ocupados del nivel 3d del hierro, el  níquel y el cobalto. Consiste en la fácil alineación de los dipolos permanente no apareados con el campo magnético aplicado, debido a la interacción de intercambio o al refuerzo mutuo de los dipolos. Esto significa que aún con campos magnéticos pequeños se obtienen magnetizaciones importantes, con permeabilidad relativa de hasta 106.

- Antiferromagnetismo: Los momentos magnéticos producidos en dipolos vecinos se alinean  en  el campo magnético oponiéndose unos a otros, aún cuando la intensidad de cada dipolo sea muy alta. Esto produce una magnetización nula.

- Ferrimagnetismo: Se da principalmente en materiales cerámicos, donde diferentes iones crean momentos magnéticos distintos, causando que, en un campo magnético los dipolos de ion A pueden alinearse con el campo, en tanto que los dipolos del ion B pueden oponérsele. Como las intensidades de los dipolos son distintas, el resultado será una magnetización neta. Así, los materiales con este tipo de comportamiento pueden dar una buena intensificación del campo aplicado.

http://www.mailxmail.com/curso-introduccion-ciencia-materiales/propiedades-materiales-magneticas

teoria del magnetismo

El magnetismo es un fenómeno físico que despierta mucha admiración y curiosidad, quizás por el hecho que es una fuerza invisible a nuestros ojos. Existen muchas teorías del magnetismo que explican con exactitud cómo actúa esta fuerza de atracción o repulsión entre los materiales.
Mediante la observación y el estudio de las ondas sísmicas, se dedujo que la Tierra tiene un núcleo líquido de alta densidad, y dentro de este núcleo líquido hay un núcleo sólido.

http://www.ojocientifico.com/2011/03/08/teorias-del-magnetismo

densidad de campo magnetico y permeabilidad magnetica

Los campos magnéticos generados por las corrientes y que se calculan por la ley de Ampere o la ley de Biot-Savart, se caracterizan por el campo magnético B medido en Teslas. Pero cuando los campos generados pasan a través de materiales magnéticos que por sí mismo contribuyen con sus campos magnéticos internos, surgen ambigüedades sobre que parte del campo proviene de las corrientes externas, y que parte la proporciona el material en sí. Como prática común se ha definido otra cantidad de campo magnético, llamada usualmente "intensidad de campo magnético", designada por la letra H. Se define por la relación
H = B00 = B/μ0 - M
y tiene un valor que designa de forma inequívoca, la influencia que ejerce la corriente externa en la creación del campo magnético del material, independientemente de la respuesta magnética del material. La relación de B se puede escribir de forma equivalente
B = μ0(H + M)
H y M tendrán las mismas unidades, amperios/metro. Para distinguir aún mas B de H, a veces se le llama a B densidad de flujo magnético o inducción magnética. A la cantidad M en estas fórmulas, se le llama magnetización del material.
Otro uso común para la relación entre B y H es
B = μmH
donde
μ = μm = Kmμ0
siendo μ0 la permeabilidad magnética del vacío y Km la permeabilidad relativa del material. Si el material no responde al campo magnético externo, no produciendo ninguna magnetización, entonces Km = 1. Otro cantidad magnética comunmente usada es la susceptibilidad magnética, la cual especifica en cuanto difiere de 1, la permeabilidad relativa.
Susceptibilidad magnética χm = Km - 1
En los materiales paramagnéticos y diamagnéticos, la permeabilidad relativa está muy próxima a 1, y consiguientemente la susceptibilidad magnética muy próxima a 0. En los materiales ferromagnéticos, estas cantidades pueden ser muy grandes.
La unidad para la intensidad del campo magnético H, se puede obtener de su relación con el campo magnético B, B=μH. Como la unidad de permeabilidad magnética μ es N/A2, entonces la unidad para la intensidad del campo magnético es:
T/(N/A2) = (N/Am)/(N/A2) = A/m
El Oersted es una unidad mas antigua de intensidad de campo magnético: 1 A/m = 0.01257 Oersted

http://hyperphysics.phy-astr.gsu.edu/hbasees/magnetic/magfield.html

densidad de flujo

La densidad de flujo magnético, visualmente notada como B, es el flujo magnético por unidad de área de una sección normal a la dirección del flujo, y es igual a la intensidad del campo magnético.
La unidad de la densidad en el Sistema Internacional de Unidades es el Tesla.
Está dado por:
donde B es la densidad del flujo magnético generado por una carga q que se mueve a una velocidad v a una distancia r de la carga, y ur es el vector unitario que une la carga con el punto donde se mide B (el punto r).
o bien
donde B es la densidad del flujo magnético generado por un conductor por el cual pasa una corriente I, a una distancia r.
Este campo B también se llama inducción magnética.
La fórmula de esta definición se llama Ley de Biot-Savart, y es en magnetismo la “equivalente” a la Ley de Coulomb de la electrostática: Sirve para calcular fuerzas de atracción-repulsión entre conductores atravesados por corrientes de carga.
El campo inducción, B, o densidad de flujo magnético (los tres nombres son equivalentes) es incluso mas importante en electromagnetismo que el propio campo magnetico H, y aparece en las ecuaciones de Maxwell con mayor relevancia que este.
Ecuaciones de Maxwell
Las ecuaciones de Maxwell son las ecuaciones que describen los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético. De las ecuaciones de Maxwell se desprende la existencia de ondas electromagnéticas propagándose con velocidad vf:
El valor numérico de esta cantidad, que depende del medio material, coincide con el valor de la velocidad de la luz en dicho medio, con lo cual Maxwell identificó la luz con una onda electromagnética, unificando la óptica con el electromagnetismo.

http://www.mitecnologico.com/Main/DensidadFlujoMagnetico


magnetismo terrestre

El campo magnético de la Tierra (también conocido como el campo geomagnético) es el campo magnético que se extiende desde el núcleo interno de la Tierra hasta su confluencia con el viento solar, una corriente de partículas de alta energía que emana del Sol. Es aproximadamente el campo de un dipolo magnético inclinado en un ángulo de 11 grados con respecto a la rotación del eje, como si hubiera un imán colocado en ese ángulo en el centro de la Tierra. Sin embargo, a diferencia del campo de un imán de barra, el campo de la Tierra cambia con el tiempo porque en realidad es generado por el movimiento de las aleaciones de hierro fundido en el núcleo externo de la Tierra (la geodinámica).El Polo Norte magnético se ¨pasea¨, por fortuna lo suficientemente lento como para que la brújula sea útil para la navegación. A intervalos aleatorios (un promedio de varios cientos de miles de años) el campo magnético terrestre se invierte (los polos geomagnéticos norte y sur cambian lugares con el otro) Estas inversiones dejan un registro en las rocas que permiten a los paleomagnetistas calcular los movimientos pasados de los continentes y los fondos oceánicos como consecuencia de la tectónica de placas. La región por encima de la ionosfera, y la ampliación de varias decenas de miles de kilómetros en el espacio, es llamada la magnetosfera. Esta región protege la Tierra de la dañina radiación ultravioleta y los rayos cósmicos.

La orientación de las rocas en las dorsales oceánicas, la magnetorrecepción de algunos animales y la orientación de las personas mediante brújulas son posibles gracias a la existencia del campo magnetico terrestre.

El Polo Norte Magnético se encuentra a 1800 kilómetros del Polo Norte Geográfico. En consecuencia, una brújula no apunta exactamente hacia el Norte geográfico; la diferencia, medida en grados, se denomina declinación magnética. La declinación magnética depende del lugar de observación, por ejemplo actualmente (2006) en Madrid (España) es aproximadamente 3º oeste[cita requerida]. El polo Sur magnético está desplazándose por la zona norte canadiense en dirección hacia el norte de Alaska.

http://es.wikipedia.org/wiki/Campo_magn%C3%A9tico_terrestre

campo magnetico

Un campo magnético es un campo de fuerza creado como consecuencia del movimiento de cargas eléctricas (flujo de la electricidad).
La fuerza (intensidad o corriente) de un campo magnético se mide en Gauss (G) o Tesla (T).
El flujo decrece con la distancia a la fuente que provoca el campo.
Fuente: GreenFacts

fuerza entre polos magneticos

En los imanes sencillos, la fuerza magnética trabaja de la siguiente manera: cuando los imanes se acercan, la fuerza los atraerá si los polos son opuestos, es decir, si el polo de uno de los imanes es positivo y el del otro imán es negativo. Si se da esta condición, los dos imanes se verán "forzados" a mantenerse unidos.

Si se trata de unir dos polos de la misma polaridad, la fuerza del magnetismo hará que los dos imanes se rechacen entre sí y no puedan unirse.


http://www.windows2universe.org/physical_science/magnetism/force_of_magnetism.html&lang=sp

inseparabilidad de los polos magneticos

Ley de inseparabilidad de los polos Magnéticos
Si a un imán lo quebramos en dos piezas; se obtiene 2 piezas de imán cada uno con sus dos polos magnéticos. Hasta donde se sabe, los polos magnéticos siempre vienen en pares. Los científicos han tratado de "romper" los imanes, aun a nivel microscópico en "monopolos" separados (imanes de un solo polo), pero ninguno ha tenido éxito.- Coulomb explicó la "inseparabilidad de los polos magnéticos" admintiendo que el magnetismo de los cuerpos se encuentra en las moléculas del imán.



http://es.answers.yahoo.com/question/index?qid=20100629154314AACEemj

Tipos de imanes

Los imanes pueden ser: naturales o artificales, o bien, permanentes o temporales.
Un imán natural es un mineral con propiedades magnéticas.
Un imán artificial es un cuerpo de material ferromagnético al que se ha comunicado la propiedad del magnetismo.
Un imán permanente está fabricado en acero imanado.
Un imán temporal, pierde sus propiedades una vez que cesa la causa que provoca el magnetismo.
Un electroimán es una bobina (en el caso mínimo, una espira) por la cual circula corriente eléctrica.